Full Description of Digital Numbering System!??
Full Description of Digital Numbering System
gvbe mf¨Zvi m~PbvjMoe n‡Z ïiæ K‡i GwUi
μgweKv‡ki mv‡_ mv‡_ gvbyl MYbv Z_v wnmve-wbKv‡mi
cÖ‡qvRbxqZv Abyfe Ki‡Z _v‡K| cÖvPxbKv‡j MYbvi
Rb¨ nv‡Zi Av½yj, bywo cv_i, wSbyK, KvwV,
iwki wMU, †`qv‡j `vM KvUv BZ¨vw` e¨envi Ki‡Zv|
mg‡qi weeZ©‡b DboewZi avivevwnKZvq MYbvi
†ÿ‡Î hy³ n‡jv wewfboe cÖZxK I wP‡ýi e¨envi|
eZ©gv‡b gvbyl MYbvi Rb¨ `kwgK msL¨v c×wZ
e¨envi K‡i| Kw¤úDUvi KvR K‡i evBbvwi msL¨v
c×wZ‡Z| GQvovI Kw¤úDUvi KvR K‡i AKU¨vj, †n·v‡Wwm‡gj I wewfboe †Kv‡Wi gva¨‡g|
Kw¤úDUv‡ii hveZxq MvwYwZK I hyw³g~jK KvR eySvi Rb¨
eywjqvb A¨vj‡Reiv, jwRK †MBU, wW-giM¨v‡bi
Dccv`¨, Gb‡KvWvi, wW‡KvWvi, A¨vWvi, †iwR÷vi I
KvD›Uvi BZ¨vw` m¤ú‡K© Rvbv cÖ‡qvRb|
History
of the Numbering System:
Digital Number |
gvbe mf¨Zvi m~PbvjMoe n‡Z ïiæ K‡i GwUi μgweKv‡ki
mv‡_ mv‡_ gvbyl MYbv Z_v wnmve-wbKv‡mi
cÖ‡qvRbxqZv Abyfe Ki‡Z _v‡K| cÖvPxbKv‡j MYbvi
Rb¨ bvbv iKg DcKiY e¨envi Kiv n‡Zv|
h_v: nv‡Zi Av½yj, bywo cv_i, wSbyK, KvwV, iwki
wMU, †`qv‡j `vM KvUv BZ¨vw`| mg‡qi weeZ©‡b
DboewZi avivevwnKZvq MYbvi †ÿ‡Î hy³ n‡jv
wewfboe cÖZxK I wP‡ýi e¨envi| wLª÷c~e© 3400 mv‡j
nvqv‡ivwMøwd· (Hieroglyphics)
wPý ev msL¨v
c×wZi gva¨‡g me©cÖg MYbvi Kv‡R wjwLZ msL¨v ev
wP‡ýi cÖPjb ïiæ nq| Gici ch©vqμ‡g †gqvb (Mayan)
I †ivgvb (Roman)
msL¨v c×wZ
e¨env‡ii cÖPjb ïiæ nq| cieZ©x‡Z fviZel© I
Avi‡e `kwgK msL¨v c×wZi cÖPjb ïiæ nq- hv
eZ©gv‡b evsjv‡`kmn mviv we‡k¦i wewfboe †`‡k
wnmve-wbKv‡mi Rb¨ e¨vcK RbwcÖqZv AR©b K‡i Ges
AvRI eûwea MvwYwZK Kv‡R eûj e¨eüZ n‡‛Q|
Type
of Number System:
Classification of Number System. |
†Kv‡bv msL¨v cÖKvk Kivi c×wZ‡K e‡j msL¨v c×wZ|
Ab¨ K_vq, †h c×wZi gva¨‡g msL¨v cÖKvk I
MYbv Kiv nq Zv‡K msL¨v c×wZ e‡j| msL¨v cÖKvk
Kivi wewfboe cÖZxKB n‡‛Q A¼| †hgb: 125
msL¨vwU 1, 2, I 5 G wZbwU A¼ Øviv MwVZ|
mf¨Zvi ïiæ †_‡K AvR ch©šÍ †hme msL¨v c×wZi
cÖPjb n‡q‡Q Zv‡`i‡K cÖavbZt `ywU fv‡M fvM
Kiv hvq| h_v:
1.bb-cwRkbvj(Non-Positional) msL¨v c×wZ|
1.cwRkbvj (Positional)msL¨v c×wZ|
(Non-Positional) msL¨v c×wZ:
GKwU cÖvPxbZg c×wZ n‡‛Q bb-cwRkbvj msL¨v c×wZ|
eZ©gv‡b G c×wZi cÖ‡qvM LyeB Kg|
†h msL¨v c×wZ‡Z †Kv‡bv msL¨vq e¨eüZ wPý ev
A¼mg~n †Kv‡bv ¯’vbxq gvb ev Ae¯’v‡bi Dci
wbf©i K‡i bv, Zv‡K bb-cwRkbvj msL¨v c×wZ e‡j|
msL¨vi g‡a¨ e¨eüZ A¼¸‡jv †Kvb
Ae¯’v‡b Av‡Q Zvi †Kv‡bv cÖfve †bB| msL¨vq
e¨eüZ A¼ †hLv‡bB _vKzK bv †Kb G‡`i wbR¯^
gvb ØvivB msL¨vwUi gvb wba©viY Kiv nq| †hgb-
cÖvPxb nvqv‡ivwMøwd· msL¨v c×wZ|
(Positional) msL¨v c×wZ:
eZ©gv‡b me‡P‡q ¸iæZ¡c~Y© I eûj cÖPwjZ msL¨v
c×wZ n‡‛Q cwRkbvj msL¨v c×wZ| †h
msL¨v c×wZ
cÖKvk Kivi Rb¨ msL¨v c×wZ‡Z e¨eüZ †g․wjK wPý, †eR ev wfwË Ges Gi
Ae¯’vb ev ¯’vbxqgvb _vK‡Z
nq Zv‡K cwRkbvj msL¨v c×wZ e‡j| †hgb evBbvwi
msL¨v c×wZ‡Z 0 I 1 G `ywU †g․wjK wPý e¨eüZ nq
Ges †eR n‡‛Q 2| wWwR‡Ui Ae¯’v‡bi Dci msL¨vi
gvb wbf©i K‡i| GRb¨ evBbvwi msL¨v c×wZ‡K
cwRkbvj msL¨v c×wZ e‡j| cwRkbvj msL¨v c×wZ‡Z
†Kv‡bv GKwU msL¨vi gvb †ei Kivi Rb¨ wZbwU
Dcv`v‡bi cÖ‡qvRb nq| h_v:
1. msL¨vwU‡Z e¨eüZ A¼¸‡jvi wbR¯^ gvb,
2. msL¨v c×wZi †eR (Base)
ev wfwË,
3. msL¨vwU‡Z e¨eüZ A¼¸‡jvi Ae¯’vb ev ¯’vbxq
gvb|
cwRkbvj msL¨v c×wZ‡Z cÖwZwU msL¨v‡K i¨vwW· (Radix)
c‡q›U (.) w`‡q
c~Y©vsk (Integer) I
fMoevsk (Fraction) G `yAs‡k fvM
Kiv nq|
msL¨v c×wZi (Base):
†Kv‡bv msL¨v c×wZi †eR ev wfwË n‡‛Q H msL¨v c×wZ‡Z e¨eüZ †g․wjK wPýmg~‡ni †gvU msL¨v|
†hgb- evBbvwii †eR 2| KviY G c×wZ‡Z †gvU 2wU
†g․jK wPý Av‡Q| †hgb- 0
I 1|
Ab¨ K_vq, †Kv‡bv GKwU msL¨v c×wZ‡Z e¨eüZ †g․wjK cÖZxK ev A‡¼i †gvU
msL¨v‡K D³ msL¨v
c×wZi †eR (Base) ev wfwË ejv nq| †eR Øviv
†Kv‡bv GKwU msL¨v, †Kvb msL¨v c×wZi
msL¨v Zv wbiƒcY Kiv nq| †hgb-`kwgK msL¨v c×wZi
†eR 10,
evBbvwi msL¨v c×wZi
†eR 2, AKU¨vj I †n·v‡Wwmgvj msL¨v
c×wZi †eR h_vμ‡g 8 I 16|
কজের ধরন ও হিসাব নিকাসের ভিত্তিতে বিভিন্ন প্রকার সংখ্যা পদ্বতি প্রচলন ও ব্যবহার রয়েছে ।
যথা:
1. `kwgK msL¨v c×wZ (Decimal Number System)
2. evBbvwi msL¨v c×wZ (Binary Number System)
3. AKU¨vj msL¨v c×wZ (Octal Number System)
4. †n·v‡Wwmgvj msL¨v c×wZ (Hexadecimal Number System)
দশমিক সংখ্যা পদ্বতি (Decimal
Number System) :
mvaviY wnmve-wbKv‡mi Rb¨ `kwgK msL¨v c×wZ
e¨envi Kiv nq| †h msL¨v c×wZ‡Z 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, G `kwU A¼ ev
wPý e¨envi Kiv nq Zv‡K `kwgK msL¨v c×wZ e‡j|
†h‡nZz `kwgK msL¨v c×wZ‡Z 0
n‡Z 9
ch©šÍ `kwU A¼ ev
wPý e¨envi Kiv nq| myZivs G †eR
10| উদাহরণ: (125)10
Decimal Number |
বাইনারি সংখ্যা পদ্ধতি (Binary Number System) :
evBbvwi msL¨v c×wZ GKwU mijZg msL¨v c×wZ|
Kw¤úDUv‡ii Af¨š ÍixY KvR সম্পাদন nq evBbvwimsL¨v c×wZ‡Z| 0
I 1
G `ywU A¼‡K Binary digit
ev ms‡ÿ‡c Bit
ejv nq| †h msL¨v
c×wZ‡Z 0 I 1
G `ywU A¼ e¨envi Kiv nq Zv‡K evBbvwi msL¨v c×wZ
e‡j| evBbvwi msL¨v c×wZ‡Z †h‡nZz 2wU A¼
e¨envi Kiv nq| myZivs GwUi †eR ev wfwË 2|
Binary Number |
অকট্যাল সংখ্যা পদ্ধতি (Octal Number System):
evBbvwi msL¨v 2 Gi wfwˇZ MwVZ e‡j GwU †ewk
`xN©| G‡K mnR I †QvU Kivi Rb¨ Av‡iv `ywU msL¨v c×wZi D™¢e nq| Gi GKwU AKU¨vj msL¨v
c×wZ| AvaywbK wWwRUvj Kw¤úDUv‡I AKU¨vj msL¨v c×wZ e¨eüZ n‡‛Q| †h msL¨v c×wZ 0, 1, 2, 3,
4, 5, 6, 7 G AvUwU A¼ ev wPý wb‡q MwVZ Zv‡K
AKU¨vj msL¨v c×wZ e‡j| G 8
wU †g․wjK A¼ ev wPý wb‡q hveZxq
MvwYwZK Kg©KvÐ m¤úv`b Kiv nq e‡j Gi †eR ev wfwË n‡jv 8| G c×wZ‡Z 8
Ges 9
Gi †Kv‡bv Aw¯ÍZ¡
†bB| AKU¨vj msL¨v c×wZ‡Z GKwU AKU¨vj msL¨v wZbwU Binary
digit †K Represent
K‡i|
হেক্সাডেসিমাল সংখ্যা পদ্ধতি (Hexadecimal Number System)
†h msL¨v c×wZ‡Z 16wU wPý ev A¼ Av‡Q, †mB msL¨v
c×wZ‡K †n·v‡Wwm‡gj msL¨v c×wZ e‡j|
†n·v‡Wwmgvj msL¨v c×wZi †g․wjK A¼ ev cÖZxK †gvU 16wU|
h_v: 0, 1, 3, 4, 5, 6, 7, 8, 9,Ges, A, B, C, D, E, F | G 16 wU
†g․wjK cÖZxK ev A¼ e¨envi K‡i
mKj cÖKvi MvwYwZK wnmve- wbKvm m¤úv`b Kiv
nq| †h‡nZz GLv‡b 16
wU A¼ ev cÖZxK e¨envi
Kiv nq| ZvB †n·v‡Wwmgvj msL¨v c×wZi †eR ev wfwË n‡jv 16| mycvi Kw¤úDUvi, †gBb‡d«g Kw¤úDUv‡I †n·v‡Wwmgvj
msL¨v c×wZ e¨eüZ n‡‛Q| cv‡ki mviwY‡Z `kwgK msL¨vi
mgZzj¨ †n·v‡Wwmgvj msL¨vi gvb †`Lv‡bv n‡jv :
GLv‡b, A = 10, B = 11, C = 12, D =
13, E = 14 Ges F = 15|
উদাহরণ: (3FC. 2B)16 GKwU †n·v‡Wwmgvj msL¨v| eZ©gv‡b wewfboe ai‡bi
Kw¤úDUvi wm‡÷‡g
†n·v‡Wwmgvj msL¨v c×wZ e¨envi n‡‛Q|
Hexa-Decimal |